Students explore careers and network with alumni at 2019 Tigers on Call event.

Microbe diversity key to healthy coastal ecosystems.

A glowing “TIGER mouse” helps understand brain injuries, effectiveness and diseases.

Salamanders regenerate to buffer themselves from climate change.

Microbial diversity actually harness their unique ability to regenerate limbs to rapidly minimize the impact of climate change. Significantly, the researchers observed that the southern Appalachian Mountains use temperature rather than humidity as the best cue to anticipate changes in their environment. Biological Sciences researchers have shown for the first time that these salamanders inhabiting these animals can acclimate.

The amphibian breathes through its skin, and to survive it must keep its skin intact. Therefore, the researchers focused on the skin’s extracellular vesicles. These vesicles are small, membrane-bound structures that can carry important molecules and are a way for the skin to communicate with other parts of the body. The researchers found that the extracellular vesicles from regenerating salamander skin contain many different molecules that are not found in non-regenerating skin. These molecules include signaling proteins and enzymes that are involved in the regeneration process.

The researchers also observed that the extracellular vesicles from regenerating salamander skin contain many different molecules that are not found in non-regenerating skin. These molecules include signaling proteins and enzymes that are involved in the regeneration process. This suggests that the extracellular vesicles from regenerating salamander skin could be used as a diagnostic tool for monitoring tissue regeneration and as a potential therapy for promoting tissue regeneration in other animals.

These findings provide new insights into the mechanisms of tissue regeneration and could have implications for developing new therapies for conditions such as burn injuries and other forms of skin damage. The researchers hope that their work will lead to new treatments for tissue regeneration and could also be used to understand how other organisms can regenerate their body parts.

As important as the bacteria are, little was known about their makeup until now. Biological Sciences' associate professor Barbara Campbell recently published a paper indicating that the seagrass in which the clams live.

Bill Baldwin's lab ties metabolic enzyme to obesity and fatty liver disease.

Researchers have long suspected that the metabolic enzyme KDH2 plays a role in obesity and fatty liver disease. But until recently, it was unclear how the enzyme functions in the body. However, recent studies have shed light on the role of KDH2 in these diseases.

KDH2 is an enzyme that is involved in the production of several important molecules, including ketones and fatty acids. These molecules are important for the body's energy metabolism, and changes in their production can lead to obesity and fatty liver disease.

In a recent study, researchers at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.

The researchers also found that KDH2 levels are elevated in the livers of mice with fatty liver disease. They also found that KDH2 levels in the liver are negatively correlated with the amount of liver fat. This suggests that KDH2 may be involved in the development of fatty liver disease.