Hope your 2019 is off to a fantastic start!

As I basked in the Clemson spirit in Santa Clara witnessing our Clemson Tigers win the national championship, I heard Coach Swinney say in his interview, “We were not chasing the national championship, we were focused on being the best we could be every day.” Chasing excellence yielded perfection for Clemson Football this year.

As we relentlessly pursue excellence in science, we may not have national championships, but we will have a tremendous positive impact as we tackle tomorrow’s greatest scientific challenges and prepare the next generation of scientists.

Thank you for being such a big part of the education, research and experience that happens across our University every day. Thank you for being a part of the Clemson family. Together, we are making a difference. Thank you for your time, energy and commitment. I look forward to seeing you in person this year.

Your support helps build world-class facilities and recruit extraordinary faculty on the cutting edge of science. Your gifts make possible the best student experiences in the world. Your generosity empowers us to make new discoveries that will transform tomorrow.

As we look back at 2018 – What a Year! – I am reminded of that image of Coach Swinney and our student athletes locked arm-in-arm as they took the field. Join us academically, arm-in-arm, as we collectively focus on advancing SCIENCE.

Go Tigers!

Perfect in every way

After the rousing victory, Clemson quarterback Trevor Lawrence holds the national championship trophy alongside teammates and coach Dabo Swinney (far right). Image credit: Clemson University

Perfection was the watchword for Clemson in 2018. Clemson finished the regular season 15-0 and now, after an overtime victory to advance to the College Football Playoff National Championship, the Tigers are 15-0 for the second time in three years.

The Tigers became the first team in the modern era to go 15-0,annointing the 2018-2019 squad as the “greatest college football team of all time.”

Clemson crushed the vaunted Alabama Crimson Tide 44-16 on Jan. 7 in Santa Clara, California. True-freshman quarterback Trevor Lawrence led the charge, playing with a calm and maturity well beyond his years.

The following Saturday, tens of thousands attended a championship parade and celebration in downtown Clemson and at the stadium.

The College of Science joins the Clemson University family in congratulating coach Dabo Swinney and his ultra-talented team of coaches and players. Up next: three out of four?

As today’s student leaders, Clemson’s ODK members are forging the future in a variety of ways

The Clemson Circle of Omicron Delta Kappa (ODK), which includes 30 members from the College of Science, sells and distributes about 2,000 honor stoles each academic year. The profits benefit the campus and external organizations in extraordinary ways.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The Mojave rattlesnakes that live in the deserts of the southwestern U.S. and central Mexico are some of the most venomous snakes in the world. Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.

Clemson researchers work with citizen-scientists to better understand diversity of rattlesnake venom.

The discovery that Mojave Rattlesnakes have multiple venom types that are more widespread than previously thought is helping to advance scientific understanding of venomous animals and their impact on ecosystems.