These videos are a great tool to teach about how dietary fat intake is connected to common metabolic diseases. The video was created by Shraddha Nayak, PhD in collaboration with Janet Lindsley, PhD and Amy Hawkins, PhD from the University of Utah, and Judith Simeone CA, Wilkerson JL, Poss AM, Banks JA, Varre JV, Guevara JL, Hernandez EJ, McKenzie AI, Mahmassani ZS, Petrocelli JJ, de Hart NMMP, Fix DK, Ferrara PJ, Drummond MJ. Simeone CA, Wilkerson JL, Poss AM, Banks JA, Varre JV, Guevara JL, Hernandez EJ, McKenzie AI, Mahmassani ZS, Petrocelli JJ, de Hart NMMP, Fix DK, Ferrara PJ, Drummond MJ.

The goal of these videos are to educate both the broader community and the medical profession about the importance of metabolic health. The videos will be available for free on the University of Utah’s website.

Dopamine signaling in the brain, can improve hypoglycemia awareness in people with type 1 diabetes. Taking a closer look, they determined that when iron levels are too low, their inability to sense a fall in blood sugar levels. This ultimately impaired the ability of neurons in this brain region to properly sense the change in glucose levels.

The team’s research has led to a clinical trial evaluating whether metoclopramide, a drug that dampens dopamine signaling in the brain, can improve hypoglycemia awareness in people with type 1 diabetes. This trial is ongoing and will provide valuable insights into the role of iron in metabolic health.

Abnormal cellular metabolism interferes with the ability of neurons in this brain region to properly sense the change in glucose levels. The researchers have discovered that abnormal cellular metabolism interferes with the ability of neurons in this brain region to properly sense the change in glucose levels. They are currently working on developing new therapies that target this process to improve hypoglycemia awareness in people with type 1 diabetes.

Treating diabetic retinopathy is an ongoing challenge for researchers and clinicians. The researchers have discovered that abnormal cellular metabolism interferes with the ability of neurons in this brain region to properly sense the change in glucose levels. They are currently working on developing new therapies that target this process to improve hypoglycemia awareness in people with type 1 diabetes.

The researchers have discovered that abnormal cellular metabolism interferes with the ability of neurons in this brain region to properly sense the change in glucose levels. They are currently working on developing new therapies that target this process to improve hypoglycemia awareness in people with type 1 diabetes.

Treating diabetic retinopathy is an ongoing challenge for researchers and clinicians. The researchers have discovered that abnormal cellular metabolism interferes with the ability of neurons in this brain region to properly sense the change in glucose levels. They are currently working on developing new therapies that target this process to improve hypoglycemia awareness in people with type 1 diabetes.

The researchers have discovered that abnormal cellular metabolism interferes with the ability of neurons in this brain region to properly sense the change in glucose levels. They are currently working on developing new therapies that target this process to improve hypoglycemia awareness in people with type 1 diabetes.

The researchers have discovered that abnormal cellular metabolism interferes with the ability of neurons in this brain region to properly sense the change in glucose levels. They are currently working on developing new therapies that target this process to improve hypoglycemia awareness in people with type 1 diabetes.